Após a base de cálculo integral do primeiro volume, começamos esse volume apresentando diversas funções definidas por integrais não-elementares, como a função Erro, a função Integral Exponencial, Logaritma, Trigonométricas, Dilogaritma, Inversa da Tangente para então entrarmos nas integrais de Euler, a função Gama e seus desdobramentos e propriedades, função Log-Gama e Poli-Gama, onde entre outras coisas, demonstramos a expansão de em série de Fourier (Teorema de Kummer). Na sequência, abordamos a Função Beta, a Função Zeta, onde apresentamos uma outra possibilidade de solução para o problema da Basiléia, a função Eta de Dirichlet, os números de Bernoulli, com sua história, deduções e teoremas até os dias de hoje. Uma vez abordadas as funções de integrais, vamos as somas, Soma de Euler-MacLaurin, a Soma de Ramanujan para Séries Divergentes Infinitas (incluindo o seu Teorema), a integral de Malmstèn (e Vardi), a integração repetida de Cauchy, e como não poderíamos deixar de ver, as Integrais Elípticas, terminando com uma abordagem abrangente das Funções Hipergeométricas.
Peso: | 0.63 kg |
Número de páginas: | 266 |
Ano de edição: | 2024 |
ISBN 10: | 6555634502 |
ISBN 13: | 9786555634501 |
Altura: | 24 |
Largura: | 21 |
Comprimento: | 2 |
Edição: | 1 |
Idioma : | Português |
Tipo de produto : | Livro |
Assuntos : | Matemática Financeira |
Nós usamos cookies para melhorar a sua experiência no site e, ao continuar navegando, você concorda com essas condições. Acesse o nosso Portal de Privacidade para visualizar nossas Política de Privacidade, Política de Cookies e Termo de Compromisso e Uso do Site.
Avaliações