Neste volume, começamos com o conceito de limite (incluindo exemplos de cálculos, seja definição ou não), continuidade e algumas aplicações, na sequência, o conceito de pela de integral, na forma de Soma de Riemann, com aplicações da definição, como a Integral Multiplicativa de Vito Volterra e a Integral de Newton (que nos permitiu uma melhor aproximação do valor de Pi), definimos ainda Integral de Steieltjes, a Integral de Lebesgue (junto como o Teorema da Convergencia Dominada, tendo o cuidado de incluir, mesmo que no apêndice, o material necessário e suficiente à compressão do desenvolvimento. Em seguida abordamos diversas técnicas de integração, entre elas, Por Partes (incluindo o método DI), Substituição, Substituição e Redução Trigonométricas, Funções Racionais e Frações Parciais (incluindo a Regra de Heaviside), a Regra do Rei, a Regra da Rainha, Substituição de Euler e de Euler-Wierstrass, Integral da Função Inversa, entre outras, todas com exemplos suficientes para abranger a grande maioria dos problemas encontrados na literatura especializada. O conteúdo abordado, nos leva a questionarmos quais funções podem ou não possuir uma integral definida em termos de funções elementares, o que nos conduz aos Teoremas de Liouville e ao Teorema de Che byshev, seguidos de exemplos de aplicação. Continuamos com a integração sob o sinal da integral, de Leibniz, e na versão de Feynman, o que nos permite resolver diversas integrais, como a integral de Ahmed, Coxeter, Froullani, Serr
Peso: | 0.562 kg |
Número de páginas: | 238 |
Ano de edição: | 2024 |
ISBN 10: | 6555634499 |
ISBN 13: | 9786555634495 |
Altura: | 24 |
Largura: | 21 |
Comprimento: | 1 |
Edição: | 1 |
Idioma : | Português |
Tipo de produto : | Livro |
Assuntos : | Matemática Financeira |
Nós usamos cookies para melhorar a sua experiência no site e, ao continuar navegando, você concorda com essas condições. Acesse o nosso Portal de Privacidade para visualizar nossas Política de Privacidade, Política de Cookies e Termo de Compromisso e Uso do Site.
Avaliações